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ABSTRACT: Motivated by Arikan’s channel polarization that shows the occurrence of capacity-achieving 

code sequences, we address the scheme design issues by switching to polarizing frequency selective fading 

channels while transmitting information symbols in a source-relay-destination MIMO-OFDM relay commu-

nication system. A simple polar-and-forward (PF) MIMO relay scheme, with source node polar coding and 

relay nodes polar coding, is proposed to provide an alternative solution for transmitting with higher relia-

bility than the conventional decode- and-forward/amplify-and-forward (DF/AF) relay schemes. In the proposed 

scheme, OFDM modulator is implemented at source node, some simple operations, namely time reversion, 

complex conjugation and polarization, are implemented at relay nodes, and the cyclic prefix (CP) removal 

is performed at destination node. It is divided into two symmetrical polarizing relay systems, i.e., the down-

polarizing system and the up-polarizing system, which result in different capacities for the polar system. We 

analyze the bit error rate (BER) performance with the fixed polar  system  equipped with  four  OFDM  blocks, 

which  is  an idea approach to select signal sequences that tend to polarize in terms of the reliability under 

certain combining and splitting the transmitted OFDMs in the frequency selective fading (FSF) channels. The 

polar system has a salient recursiveness feature, and thus the transmitted information signals embedded in the 

polar code can be decoded with a low-complexity decoder. 

 

I. INTRODUCTION 
The channel polarization shows an attractive construction of provably capacity-achieving coding se-

quences [1]–[6]. It has provided an attempt method to meet this elusive goal for multi- fold binary-input discrete 

memoryless channels, where channel combining and splitting operations were applied to improve its symme-

tric capacity [1], [2]. Actually, the polarization of multiple channels is a commonplace phenomenon and thus 

it is almost impossible to avoid as long as several channels are synthesized in a proper density with certain 

arrangements. During the past decade, the multiple-input multi-output (MIMO) communication system has 

been well studied to promise significants of the increasing spectral effciency, channel capacity and link reliabili-

ty [7]–[11]. It shows that the coding gain and diversity can be simultaneously achieved with s u i t ab le  

cod ing  schemes. As the MIMO techniques  grown up, researchers have been exploring new communica-

tion paradigms. A potential proposal is the so-called wireless relay system, which provides the reliable 

transmission, high throughput and broad coverage for wireless network [12], [19], and [20]. The eminent merits 

of a MIMO wireless system lie in its potential temporal diversity gain, spatial diversity gain and multiplexing 

gain to enhance link reliability. This elegant technique can be further exploited to explore the potential spatial 

and temporal diversity on flat-fading or frequency selective fading (FSF) channels with some proper transmis-

sion schemes, such as space-time (ST) coding [13], space-frequency (SF) coding and space-time-frequency 

(STF) coding [14]–[18]. It is shown that the coding gain and diversity can be simultaneously achieved with suit-

able coding schemes. Unfortunately, as the number of transmit antennas becomes large, the complexity of 

decoding increases, which makes the design of coding or modulating schemes difficult. 

MIMO relay communications, together with the orthogonal frequency division multiplexing (OFDM) 

techniques, present an effective way of increasing reliability as well as achievable rates in next generation 

wireless networks. Cooperative diversity is usually achieved through relay nodes that help the source node 

forwarding its information. Deploying proper relays  between  source  node  and  destination  node  can  not 

only overcome shadowing due to inevitable obstacles, but also reduce the transmit power from the source node. 

In the MIMO- OFDM relay system, two or more nodes share and transmit jointly their information symbols 

in a multi-antenna array, which enables the high data rate and diversity gain. A usual approach to share in-

formation is to tune in the transmitted signals and process the whole (or partial) received information in rege-

nerative or non-regenerative way. The former employs a decode-and-forward (DF) relay scheme in which each 

relay decodes the original information from the source and forwards it to the destination [12]. Unfortunately, 

since channels are usually noisy and fading, the processed information signals are not perfect. Therefore, we 
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have to study a possible coding or modulating strategy to improve its performance that makes a merit of relay 

system. In the latter scheme it exploits an amplify-and-forward (AF) scheme to amplify and retransmit the 

scaled signals without any attempt to decode the original information [21], [22]. In  the light of  superiority 

of  these relay strategies with the availability of CSI, we consider the coding design of the MIMO-OFDM 

relay system for the FSF channels with the fixed gain relaying scheme using the polar- and-forward (PF) relay 

technique, in which each relay node encodes and retransmits the partial signals with the fixed power constraint. 

A key feature of this scheme is that we do not require relays to decode. Only a simple processing operation is 

done at each relay, which makes the transmission much simple and hence can avoid imposing bottlenecks on 

the data rate. 

Recently, significant efforts have been related to the increasing capacity [23] or the optimal design of 

the relay system [24] in terms of the DF/AF relay schemes based on a scenario equipped with single or multiple 

antennas. However, further improvement should be sought in these relay systems, in which the loss of the signal 

rate is boosted as the number of relay nodes along with antennas increases. While a key component relay design 

is to optimize the precoding of source and relay in benefits of multiple antennas and multiple OFDM symbols, 

how to design the MIMO-OFDM relay system to achieve high reliability with low-decoding complexity via a 

coding approach becomes a challenge. 

The problem with the previous relay system is the data rate loss as the number of relay nodes increases. 

This leads to the use of polar coding sequences in MIMO-OFDM system, where relay nodes are allowed to si-

multaneously transmit the same OFDM systems over the FSF channels. We consider a simple design of the re-

lay system that achieves the fascinating symmetric capacity of the FSF channels based on polar coding with a 

successive interference cancellation (SIC) decoder at destination node, which is motivated by the fascinating 

Shanon’s channel coding theorem [25]. It is an extension of work where OFDM combining and splitting are 

used for recursive code construction with the SIC decoding, which are essential characters of the polar coding 

sequences [1]–[6]. This is an idea approach to construct code sequences as combining and splitting OFDM for 

the FSF channels to increase its reliability.  

Furthermore, we establish an analytical framework that illustrates the potential bit error rate (BER) per-

formance to be achieved from the polar MIMO-OFDM relay system. We argue that the present system may in-

crease the symmetric capacity under a low computation complexity of the SIC decoding due to the fact that a 

large number OFDM symbols may be equipped for the polarizing FSF channels that tend to polarize under cer-

tain OFDM combining and splitting operations. 

This paper is organized as follows.  In Section II, we describe the polar MIMO relay system with 

two switching communication model, the down-polarizing system and the up-polarizing system. In Section 

III, we systematically study the design of an simple PF scheme with space-time-frequency (STF) transmission 

for down-polarizing and up-polarizing FSF channels. Some simulation results are also depicted in order to 

show the BER performance behavior and robustness of this polar MIMO-OFDM relay system. Finally, 

conclusions are drawn in Section IV. 

 
a) Down-polarizing OFDM Blocks for Distributed System 

 

 
b) Up-polarizing OFDM blocks for Distributed System 
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Fig. 1. The relay communication system based on the polarizing MIMOOFDM channels with two models: (a) 

denotes the down-polarizing communication model; and (b) denotes the up-polarizing communication model. 

 

Some notations are defined throughout this paper as follows: 

 : complex number field; 

 T
: finite non-negative integer set {0, 1, · · · , T − 1}; 

 Bold faced uppercase letters, such as A: matrices; 

 tr: trace of a matrix; 

 Bold faced down-case letters, such as a: column vectors; 

 Superscripts  (·)
T 

,  (·)
H ,  and  (·)* :  transpose,  complex, conjugate transpose, complex conjugate, re-

spectively; 

 ║ ∙ ║F: Frobenius norm of a matrix; 

 E[ ]x: expectation of variable ;x 

 ⊗: the Kronecker product; 

 ○: the Hadamard product, i.e., the component-wise product; 

 In
: identity matrix of size n × n; 

 diag(d
0 , … , dN −1

):  a  diagonal matrix with  diagonal entries d0
, … , dN −1

. 

 

II. CHANNEL POLARIZATION: DOWN-POLARIZING AND 

UP-POLARIZING MIMO-OFDM RELAY SYSTEM 
We consider the distributed wireless system based on OFDM modulation with N subcarriers. There is 

one source node S, one destination node D, and two relay nodes R≜, {R1,R2}, as shown in Fig.1. There is only 

one antenna at all nodes S, R and D, respectively. This assumption is applicable for any nodes equipped with 

multiple antennas. We consider a scenario where Ns OFDM symbols are transmitted for Ns = 2
n
. The design of 

the relay scheme that can mitigate relay synchronization errors is considered. Each relay node Rk, ∀  k ∈  {1, 2}, 

is assumed to be capable of processing the OFDM symbols independently and correctly. The average transmit 

power at source node S is pt. The relay scheme is half-duplex, meaning that S and R do not transmit and receive 

simultaneously. The Ns independent OFDM symbols are transmitted simultaneously from source node S to des-

tination node D in two stages. In the first stage the initial signal OFDM symbols are polarized and transmitted 

from source node S to each relay node Rk, ∀ k ∈{1,2}. In the second stage each relay node Rk forwards the (par-

tial) signal vector received from source node S to destination node D while source node S keeps silent. We fur-

ther assume that each single-link between a pair of transmit antenna and receive antenna is frequency selective 

Rayleigh fading with L independent propagation, which experiences quasi-static and remains unchanged in cer-

tain blocks. Denote the fading coefficient from source node S to relay node Rk as hSRk
 = υk and the fading coef-

ficient from relay node Rk to destination node D as hRkD = κk. Assume that υk and κk, ∀ k ∈ {1,2}, are indepen-

dent zero mean complex Gaussian random variables. Two channel impulse responses υk(t) from source node S 

to destination node R are written as: 

 




1

0

L

l
sk,lskk ),t()l()t(    (1) 

where αsk( )xrepresents the channel coefficient of the ₓ
 th 

path of the channels, and T ,xsk is the corresponding 

path delay. Each channel coefficient αsk( )x is modelled as zero mean complex Gaussian random variables with 

variance σ 
2

,xsk such that 1
0

1 2 



sk,l

l

L
. We also assume that αsk( )x are i.i.d. random variables for any (k, )x. 

Similarly, other two channel impulse responses κk(t) from relay node Rk to destination node D are written as: 

 




1

0

L

l
sk,lskk ),t()l()t(K   (2) 

where αrk(l) represents the channel coefficient of the lth path of the channels, and τl,rk is the corresponding path 

delay. Each channel coefficient αrk(l) is also modelled as zero mean complex Gaussian random variables with 

variance σ2 l,rk such that 1
0

1 2 



rk,l

l

L
. In addition, we denote the average power for one transmission of 

each relay Rk as pr. The constraint on the total network power is p = pt+2pr. We also adopt the power allocation 

strategy suggested in [26], and thus have 

pt = 2pr = p/2.   (3) 
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The MIMO-OFDM channel model, denoted by H ∈  
2×2

, is created between source node S and relay nodes R, 

and K ∈  
2×2 

between R and D. Here entries of H and K are assumed independent and identically distributed 

(i.i.d.) with distribution CN(0, 1). For the distributed MIMO-OFDM relay wireless system with source-relay-

destination triplet structure, it is equivalent to two partial MIMO-OFDM wireless systems. One part has the 

MIMO channel model H, i.e., 

H = diag(υ1, υ2),   (4) 

and another part K is given by 

K = diag(κ1, κ2).   (5) 

 

Based on the MIMO-ODFM relay channels H and K in (4) and (5), we design the polar system for the 

transmission of the signal vector x, in which we switch to the polar system in four consecutive time slots, i.e., 

down-polarizing and up-polarizing communications in turn. The system has two transmission phases. In phase 1, 

the source node broadcasts four OFDM symbols that are first polarized at source node S to each relay node Rk. 

In phase 2, source node S stops the transmission and each relay node Rk that polarizes the received symbols for 

the second time and retransmits the resulting symbols to destination node D. 

 

A. Down-polarizing MIMO-OFDM Relay System 

At source node S the transmitted information is modulated into complex symbols xij and then each N 

modulated symbol as a block are poured into an OFDM modulator of N subcarriers. Denote four consecutive 

OFDM blocks by xi = (xi,0, xi,1, … , xi,N−1)
T
, ∀  i ∈  ℤ4. We define xi + xj = (xi,0 + xj,0, xi,1 + xj,1, …, xi,N−1 + 

xj,N−1)T, ∀  i, j ∈  ℤ 4, for polarization calculation.  

In the first time slot, four consecutive OFDM blocks are processed with the down-polarizing 4×4 matrix Q4 at 

source node S, i.e., 

U = XQ4,   (6) 

where U = (u0, u1, u2, u3) denotes the polarized matrix of size N × 4, X = (x0, x1, x2, x3) denotes the signal matrix 

of size N × 4 corresponding to four OFDM blocks, the polar matrix Q4 is given by Q4 = I2 ⊗ Q2. Here matrix Q2 

is a down-polarizing matrix defined as Arikan’s fashion [1], i.e., 

Q2 =
   .  (7) 

 

Therefore, we have u2k−2 = χ2k−2 and u2k−1 = χ2k−2 + χ2k−1, for ∀ k ∈ {1, 2}. 

 In the OFDM modulator, the four consecutive blocks are modulated by N-point FFT. Then each block 

is precoded by a cyclic prefix (CP) with length lcp. Thus each OFDM symbol consists of Ls = N+lcp samples. 

Finally, four OFDM symbols are broadcasted to two relay nodes. Denote by
 
τsd2 the overall relative delay from 

source node S to relay node R2, and then to destination node D, where the relative delay means it is relative to 

relay node R1. In order to combat against both frequency selective fading channels and timing errors, we assume 

that lcp ≥ maxl,k{τl,sk+τl,rk+τsd2}. Denote four consecutive OFDM symbols by ŭi, ∀ i ∈ ℤ4, where ŭi consists of 

FFT(ui) and the corresponding CP. 

 

 

 

 

At each relay Rk, the re- ceived noisy signals will be simply processed and forwarded to destina-

tion node D. Assume the channel coefficients are constant during four OFDM symbol intervals. 

We define two processed vectors ŭ1 =  and ŭ2 =  

             

     which are polarized at R1 and R2, respectively. Namely, at source node S we have 

      u1=       

      u2= ((χ0+χ1)
T
, (χ2+χ3)

T
)

T
,  (8) 

and consequently 

ŭ1 = (FFT(χ0)
T 

, FFT(χ2)
T
)

T
, 

ŭ2 = (FFT(χ0+ χ1)
T 

, FFT(χ2+ χ3)
T
)

T
.  (9) 

Therefore, the received signals at Rk, ∀  k ∈  {1, 2}, for four successive OFDM symbol durations can be given by 

řk0  = √pt ŭ0 ⊛ kx + ⊻ 
n k0 

řk01 = √pt ŭ1 ⊛ kx + ⊻ 
n k1 

ŭ 
T 

, ŭ 
T 

0 2 

ŭ 
T , ŭ T 
1 3 

χ 
T , χ T 
0 3 

1 1 
0 1 

 

 
T 

T 

 

 
T 
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řk2  = √pt ŭ2 ⊛ kx + ⊻ 
n k2 

řk3  = √pt ŭ1 ⊛ kx + ⊻ 
n k3   (10) 

 

Table I Implementation Of The Pf Scheme For The Down-Polarized 

System At Relay Nodes. Ofi Denote The I
th

 Ofdm Block. 

 Polar R
1 Polar R

1 Process R
1 Process R

2 

OF
0 r 1̌0  r 2̌0  (̌r 1̌0 ) 0 

OF
1 ř

11 ř
21 0 

ř
* 
21 

OF
2 ř

10
+ř

12 ř
22 (̌ ř

10
+ř

12
) 0 

OF
3 ř

13 ř
23

+ř
21 0 (ř

23
+ř

21
)* 

 

where √pt is the transmission power at source node S, υk is an L×1 vector defined as υk = (αsk(0), αsk(1), … , 

αsk(L−1)), ⊛ denotes the linear convolution, and 
⊻ 
n ki, ∀  i ∈  4, denotes the corresponding additive white Gaus-

sian noise (AWGN) at relay node Rk with zero-mean and unit-variance, in four successive OFDM symbol dura-

tions. 

Then each relay node Rk polarizes, processes and forwards the received noisy signals as shown in Table I, where 

ζ(・) denotes the time-reversal of the signals, i.e., ζ(řki( )x) ≜ ř
ki(Ls − )x, ∀   x∈  ℤLs, and hence ζ(řki(Ls)) 

= řki(0), ∀  k ∈  {1, 2} and ∀  i ∈  ℤ4. Denote by 0x ≜ ζ(ř10), 1x ≜ ζ(ř10+ ř12), 2x ≜ ř21and 3x ≜ (ř21+ ř23)∗. For 

the txh subcarrier of ix we also take the notations ix,  x≜ ix( )x, ∀  ∈  ℤN.Δ 

After performing the above-mentioned processing operations, each relay node Rk amplifies the yielded 

symbols with a scalar λ = √pr/(pt + 1) while remaining the average transmission power pr. In order to make the 

PF scheme available for the FSF channels, it is required that for each relay Rk it can only implement the time 

reversal operation ζ(・) or the complex conjugation operation (・)∗ on the received OFDM symbols. 

At destination node D, the CP is removed for each OFDM symbol. We note that relay node R1 imple-

ments the time reversions of the noisy signals including both information symbols and CP. What we need is that 

after the CP removal, we obtain the time reversal version of only information symbols, i.e., ζ(FFT(ui)),∀  i ∈  ℤ4. 

Then by using some properties of FFT/IFFT, we achieve the feasible definition as follows. 

Definition 2.1 According to the processed four OFDM symbols at relay node R1 we can obtain 

ζ(υ
′ 

1) ⊛ ζ(FFT(ui)) 

at destination node if we remove the CP as in a conventional OFDM system to get an N-point vector and 

shift the last τ
 ′ 

1  = lcp − τ1 + 1 samples of the N -point vector as the first τ ′ 

1  samples. Here υ ′ 

1  is an N × 1 

vector defined as 
υ ′ 

1   = (α
s1 (0), … , α

s1 (L − 1), 0, … , 0), 

and τ ′ 

1  denotes the maximum path delay of channel υ
1 from source node S to relay node R

1
, i.e., τ

1  = 

max
l
{τ

l,s1 }. In a similar way, we define another N × 1 vector  

κ
′ 

1 = (α
r1

(0), … , α
r1

(L − 1), 0, … , 0). 

At destination node D, after the CP removal, the received four successive OFDM symbols can be written as 

 

y0= λ(√ptζ(FFT(u0))⊛ζ(υ
′ 

1)+ n̄10)⊛κ
′ 

1+n0 

y1= λ(√ptζ(FFT(u0+u2))⊛ζ(υ
′ 

1)+ n̄10+ n̄12)⊛κ
′ 

1+n1 

y2= λ(√pt(FFT(u1))∗⊛tsd2⊛t
′ 

1⊛υ
′ 

2+ n̄* 

21)⊛κ
′ 

2+n2 

y3= λ(√pt(FFT(u3+u1))∗⊛ tsd2⊛ t
′ 

1⊛ υ
′ 

2+ n̄* 

21+ n̄* 

23)  

⊛κ
′ 

2+ n3,   (11) 

where tsd2 is an N × 1 vector that represents the timing errors in the time domain denoted as t
sd2  = (0

τ,sd2
, 1, 

0, … , 0)T, and 0τsd2   is a 1 × τsd2   vector of all zeros, and Γ′ 

1   is the shift  of samples  in  the  time  domain  

defined as t
′ 

1= (0τ
′ 

1
, 1, 0, … , 0)T. Since the signals transmitted from R2 will arrive at the destination τ

sd2 samples 

later and after the CP removal, the signals are further shifted by τ 
′ 

1
 samples. The total number of shifted 

samples is denoted by τ
2 = τ

sd2 + τ ′ 

1. Here n̄
ki  is the AWGN at relay node R

k  after the CP removal, and ni  

denotes the AWGN at destination node D. 
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After that the received OFDM symbols are transformed by the N-point FFT. As mentioned before, be-

cause of the timing errors, the OFDM symbols from relay node R2 arrive at destination node τsd2 samples later 

than that of symbols from relay node R1. Since lcp is long enough, we can still maintain the orthogonality be-

tween subcarriers. The delay τsd2 in the time domain corresponds to a phase change in the frequency domain, i.e., 

f
τsd2

 = (1, e
−ι2πτsd2/N

, … , e
−ι2πτsd2(N−1)/N

)
T
, (12) 

where f = (1, e
−ι2π/N

, … , e
−ι2π(N−1)/N

)
T
 and ι = √−1. Similarly, the shift of τ

′ 

1 samples in the time domain also cor-

responds to a phase change f
τ′ 

1, and hence the total phase change is f
τ2

. 

Denote by ўi = (ўi0, ўi1, … , ўi(N−1)), ∀  i ∈  ℤ4, the received signals for four consecutive OFDM blocks at desti-

nation node D after the CP removal and the N-point FFT transformations. Namely, we have 

,n]k)nn(kf))*)uu(FFT((FFTp[y

n]knkf))*)u(FFT((FFTp[y

n]k)nn(k)))uu(FFT((FFTp[y

n]knk)))u(FFT((FFTp[y

t

t
t

t

t

32232122
2

133

22212212

11101011201

01101100
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







































(13) 

Where ))((FFT '
11 


, )k(FFTk '

11 


, )*)((FFT '
12 


, )k(FFTk '

22 


, )n(FFTn kiki 


and 

),{k),n(FFTn ii 21


and ∀  i ∈  ℤ4. 

According to the properties of the well-known FFT transforms for an N × 1 point vector x, we have  

(FFT(x))∗ = IFFT(x∗), 

FFT(ζ(FFT(x))) = IFFT(FFT(x)) = x.  (14) 

Therefore, the formulas in (13) can be written in the polar form on each subcarrier ,x ∀   x∈  ℤN, as follows 

(15) 

which can be rewritten as 

(16) 

where Φ2 ≜ ,kf 22
2







*
2 ≜ ,kf 22

2




 




2f  exp(−ι2π∈τ/N), HI and HF are information generator matrix and 

frozen generator matrix defined, respectively, as 

        (17) 

xI  x = (x0  x , x1 )x
T
, xF  x = (x2 ,x x3 )x

T
, xi  x  is the ₓth

  element  

of xi, κk,  x is the ₓth
 element of κk, nki,  x is the ₓth

 element of  

nki, and ni,  x is the ₓth
 element of ni, ∀  k ∈  {1,2} and ∀  i ∈   

Z4. Two 4 × 1 vectors e0 and e are the polarized noises given  

by e0=(e01,e02,e03,e04)
T
 and e = (e01,e02,e

03
,e

04
)

T
, where e01 = n10,  xκ1,  x+ ň0, ,x e02 = (n10,  x+ n12, )xκ1,  x+ ň1, ,x e03 = 

n21,  xκ2, +xň2,  xand e04 = (n21,  x+n23, )xκ2,  x+ň3, .x 

We note that sub-vector xI  xserves as the information vector while sub-vector xF  xas the frozen vector for the 

down-polarizing MIMO relay system, which can be derived from the Bhattacharyya parameter vector for the 

derivation of the reliability of the FSF channels, calculated in next section. The combined matrix H = (HI,HF ) 

has the same structure as Arikan’s 4 × 4 polar matrix [1], [2] 
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, 

where P4  is a permutation matrix given by 

P4 = 





















1000

0010

0100

0001

 

(18)

 

 

 

B. Up-polarizing MIMO-OFDM Relay System 

 

In the next time slot, the four consecutive OFDM blocks are processed with the up-polarizing 4 × 4 matrix 
'

4Q at S, i.e., 

  ,' '

4XQU     (19) 

 

Table ii implementation of the pf scheme for the up-polarized system at relay  

nodes ofi denote the i
th

 ofdm block. 
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where ),,,(' '

3

'

2

'

1

'

0 uuuuU   denotes  the up-polarized matrix of size N × 4, ),,,( 3210 xxxxX  denotes the 

initial signal matrix of size N ×4, the up-polarizing operation 
'

4Q is given 

by 
1

22

'

4 QIQ   and 
1

2Q is defined as 

  









11

01
1

2Q    (20) 

 

Therefore, we have u
2k−2

= x2k−2  + x
2k−1

and u
2k−1   = 

x
2k−1

, ∀  k ∈  {1, 2}. 

In the OFDM modulator for the up-polarizing system, four resulting consecutive blocks are also modulated by 

N-point 

FFT and are precoded by a CP with length lcp. Denote by 
'

iu


,∀  i ∈  ℤ4 four consecutive OFDM symbols that consist of FFT(
'

iu ) and the corresponding CP. At each re-

lay Rk, the received noisy OFDM symbols, denoted by 
'

ir


, will be polarized, processed and forwarded to desti-

nation node D. 

Define two vectors TTT uuu ),( '

1

'

0

'

1   and 
TTT uuu ),( '

3

'

1

'

2'  such that 

.),(

,))(,)((

31

'

2

3210

'

1
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xxu

xxxxu




 (21) 

After performing N -point FFT onto 
'

iu ,∀  i ∈  ℤ4 

ǔ1  = (FFT(x0 + x1 )
T , FFT(x2 + x3 )

T )T , 

ǔ2  = (FFT(x1 )
T , FFT(x3 )

T )T. (22) 
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Therefore, the received OFDM symbols at relay node Rk can be written as 

,

,
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  (23) 

Then two relay nodes polarize, process and forward the received noisy OFDM symbols as shown in Table II. 

After that we obtain  
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After performing the processing, each relay node Rk amplifies the yielded signals with a scalar 

)1/(  tr pp and forwards them to the destination node D. 

 At destination node D, the CP is removed for each OFDM symbol before being depolarized to decode 

the initial information with high reliability. Then the received noisy OFDM symbols for four successive OFDM 

symbol durations can be written as 
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Consequently, after the CP removal and N-point FFT transformations, the received four consecutive OFDM 

blocks can be given by 
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(25) 

For each subcarrier ,x ∀   x∈  ℤN, the formulas in (25) can be written in the up-polarizing structure as follows, 
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(26) 

which can be written as 

 (27) 

where 
'
IH and 

'
FH  are information generator matrix and frozen generator matrix defined, respectively, as 

 (28) 
T'

F )x,x(x   10 denote the frozen vector (bits), 
T'

I )x,x(x   32 is the vector (bits), 
'e0 and 

'e = 
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Next, we can design the polar MIMO-OFDM relay system by switching to polarizing four OFDM 

symbols for the FSF channels. Based on the down-polarizing system to transmit the 
th

 subcarrier of four 

OFDM symbols, we have the received vector of size 4 × 1 given by 

,eHHy ,FFII      (29) 

whereas deploying the up-polarizing system, we have 
'.'

,I
'
I

'
,F

' eHHy       (30) 

We can decode the initial information vectors Ix  and 
'
Ix , respectively respectively, using the con-

ventional the ML receiver or the ZF/MMSE receiver after depolarizing the transmitted signals at destination 

node D. However, in this paper we introduce a polar receiver via the polar decoding under a low complexity 

SIC strategy that can bring out similar performance behaviors as that of ML decoding for small number of 

OFDM blocks, i.e., Ns  = 4. Fortunately, due to the benefits of polar coding sequences for the large  number 

Ns = 2
n
[1]–[6] it  also shares the good BER performance behavior of polarizing FSF channels in terms of its 

capacity-achieving properties [25] as non-negative integer n goes to infinity. 

 

III. DE CODING OF T HE POL AR MIMO-OFDM RE L AY SYST EM 
We consider all single-links of the FSF channel H from each pair of transmit antenna of source node S 

and receive antenna of relay node Rk , and K from relay node Rk  to destination node D, which are inde-

pendent complex Gaussian random variables with zero-mean and unit-variance. Each single-link channel, de-

noted by W, has the transition probability W (y|x), where x, y ∈ A. As a useful measurement of the reliability of 

the wireless network, there is a conventional channel parameter, the symmetric capacity I (W) with some mod-

ulations [25]. We note that parameter I (W) is the highest rate at which the reliable communication is possible 

using inputs with equal probabilities. 

Polarizations of the FSF channels are derived from the are derived from the Ns = 2
n
 OFDM symbols polariza-

tion with generator matrix },'Q,Q{G nn
N

 222
which is an operation by which one manufacture out of Ns in-

dependent OFDM symbols W yields a second set of Ns splitting OFDM symbols :W{
)i(

Ns  i ∈ℤ }Ns  that show a 

polarization effect in a sense that, as Ns becomes large, the capacity terms :IW{
)i(

Ns  i ∈ℤ }Ns  tend towards one 

or zero for all but a vanishing fraction of indices i [1]. In this paper, we only consider polarizations of an MI-

MO-OFDM relay wireless system including Ns = 4 OFDM symbols, i.e., the combination of four OFDM sym-
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bols yields a second set of four splitting FSF channels
)i(

W{ 4 : i ∈ℤ }.4  This channel polarization consists of 

two operations, i.e., OFDM combining and OFDM splitting. 

 

OFDM Combining 

While deriving the FSF channel combining operation of the polar system with four OFDM blocks, we 

combine four OFDM symbols, denoted by W, in a recursive manner to produce a multi-level structure channel 

W4. We consider OFDM combining and splitting for the ∈th
 subcarrier of each OFDM block with the down-

polarizing information bits xI∈ or the up-polarizing information bits .x'
I Without loss of generality, we only 

consider the OFDM combining and splitting operations of the down-polarizing system with four OFDM blocks 

while showing the feasibility of the polar system. As for the OFDM combining and splitting operations of the 

up-polarizing system, we can achieve the similar results while referring to the polar coding processing in [1], [2]. 

Based on the down-polarizing system in (29), we define the down-combining equivalent FSF channel 

as )H,H(H FI expressed in (17), respectively. We note that the OFDM combining operations have the simi-

lar structure fashion as Arikan codes generated from 2
244  QPG , i.e., 

G4 = 





















1001

1011

0101

0001

   (31) 

It implies that the present polar system can be decoded via the depolarizing algorithm with a recursiveness fea-

ture. 

Without causing undue prejudice or confusion for description, we especially take the simplified notations in this 

section as follows. The notation xi ≜ xi,∈ denotes the initial input signals at source node S, ui ≜ ui,∈ the pola-

rized signals at source node S, ri ≜ ri,∈ the received signals at relay node R, vi ≜ vi,∈ the polarized signals at 

relay nodes R, and yi ≜ yi,∈ the received signals at destination node D, which are all corresponding to the ∈th
 

subcarrier of the i
th

 OFDM symbol. For each subcarrier xi, ,x yi, ,x ui, ,x and ri,  xof xi, yi, ui and ri, we also take the 

notations x ≜ (x0, ,x x1, ,x x2, ,x x3, )x
T
, xk ≜ (x2k−2, ,x x2k−1, )x

T
, y ≜ (y0, ,x y1, ,x y2, ,x y3, )x

T
, yk ≜ (y2k−2, ,x y2k−1, )x

T
, 

uk ≜ (u2k−2, ,x u2k−1, )x
T
, and rk ≜ (r2k−2, ,x r2k−1, )x

T
, ∀  k ∈  {1, 2} and ∀   x∈  ℤN. 

According to the down-polarizing system, we derive the OFDM down-combining operation of the polar FSF 

channels in terms of the above simplified notations. 

This process begins with the low-level of the recursion at Rk that combines two independent OFDMs with tran-

sition probability W, which results in the OFDM down-combining for the second level combining FSF channel 

W2 for Rk with transition probabilities 

W2(yk|rk) = W(y2k−2|r2k−2)・W(y2k−1|r2k−2+ r2k−1). (32) 

 

Similarly, the OFDM down-combing for the FSF channel W2 at source node S can be obtained with transition 

probabilities 

W2(u1|xk)=W(u2k−2|x2k−2)・W(u2k−1|x2k−2+x2k−1).  (33) 

 

Furthermore, the third level of recursion for the MIMO relay system combines two independent FSF channels 

W2 to establish the high level FSF channel W4 with transition probabilities calculated from the recursive formula 

W4(y|x)=W2(y0|x0) ・W2(y1|x0+ x1, x2+ x3) 

=W(y0|x0)W(y1|x0+x2)W(y2|x0+x1)W(y3| 


3

0i
ix ). (34) 

In the similar way, we calculate transition probabilities of OFDM up-combining for the second level FSF chan-

nel 
'W2  at Rk with transition probabilities 
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and transition probabilities of OFDM up-combining for the 

FSF channel W′2 at S as 
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Then the third level OFDM up-combining for the FSF channel '
4W can be derived with transition probabilities 

=W(y0|x0)W(y1|x0+x2)W(y2|x0+x1)W(y3| )x|y()x|y()xx|y()x|y(
i

i
''''''''
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  ).xx|y( ''
103W    (37) 

According to (34) and (34), for the ∈th
 subcarrier of each OFDM symbol, we obtain the OFDM combining for 

the third level FSF channels W4 and '
4W  with transition probabilities 

W4(y∈|x∈) = W(y0, ∈|x0, ∈) ・W(y1, ∈|x0, ∈+x2, ∈) 
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OFDM Splitting 

Next, we consider the OFDM down-splitting operation for the down-polarizing system, which splits the 

synthesized FSF channel W4 back into a set of equivalent single-link FSF channels 
)i(

4W , ∀ i ∈ ℤ4. The down-

splitting OFDMs can be used for the transmission of signals in the polar system with high reliability in terms of 

transition probabilities, as well as down-splitting channel capacity I(
)i(

4W ) [25]. At each relay node Rk, we de-

fine the OFDM down-splitting operations as one-one maps that illustrate the relation of the transition probabili-

ties of each subcarrier of two level OFDM downcombining FSF channels W and W2 as follows 
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Considering all nodes S, R and D for the whole polar system, for any subcarrier we derive the high-level OFDM 

downsplitting operations with the transition probabilities given by 
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Namely, for the ∈th
 subcarrier of each OFDM symbol we achieve the transition probabilities as follows 
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Similarly, the OFDM up-splitting operation that illustrates the relation of OFDM up-combining for two FSF 

channels W
′ 
and 

'W2 is 

 
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and the high-level OFDM up-splitting operations that illustrates the relation of two OFDM up-combining for the 

FSF channels 'W2 and 'W4 is given by 
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So far we have established the polar system based on the polarization of OFDMs. It is known that the channel 

capacity of OFDM splitting for the FSF channel 
)i(W4 can be bounded by 

  ),W(z)W(I )i()i(
44 1  

where )W(z
)i(

4 are the Bhattacharyya parameters [1] given by 
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Next, we analyze the reliability of the OFDM down-splitting for the FSF channels with transmission probabili-

ties 
)i(W4 in 

(41) based on the Bhattacharyya parameter vector 

 z4 = (z4,0, z4,1, z4,2, z4,3), 

which can be calculated from the recursion formula [1], [2], 

 
(a)The recursive down-polarization   (b)The recursive up-polarization 

Fig. 2. The tree process of the Bhattacharyya parameters for the recursive polarizing OFDMs. 

i.e., 

1,2kjkfor 

1;kj0for 

2 2

2

2
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

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
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 ,kj,kkj,k
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j,k

zz

z
z  (43) 

 

for ∀  k ∈  {1, 2} starting with z1,0 =1/2, shown in Fig.3(a). 

From scratch, we form a permutation π4 = (i0, i1, i2, i3) of 

(0, 1, 2, 3) corresponding to entries of x = (x0, x1, x2, x3)
 T

 so that the inequality z4,ij ≤ z4,ik , ∀  0 ≤ j < k ≤ 3, is 

true. Thus we have the reliability of OFDM splitting for the FSF channels given by 

 z(4) = (1/16, 7/16, 9/16, 15/16)   (44) 

which creates a permutation π4 = (0, 1, 2, 3). It implies that for each subcarrier of the source OFDM symbols x∈, 

the first two signals {x0, ∈, x1, ∈} can be transmitted with higher reliability than that of the last two signals {x2,∈, 

x3,∈}, as shown in (44). Therefore, for the reliable transmission of signals while polarizing the FSF channels, we 

let {x0,∈, x1,∈} to be the information bits that are required to be transmitted from relay nodes, and {x2,∈, x3,∈} to 

be frozen bits that provide assistance for transmissions. In practice, the frozen bits {x2,∈, x3,∈} are always be set 

zeros for the depolarizing for convenience, i.e., {x2,∈ = 0, x3,∈ = 0}. This property can be utilized for the flexible 

transmission of signals on the FSF channels with high reliability [1]. 
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 In the similar way, we can derive the reliability of upsplitting system for the FSF channel )i(W4 with 

transmission probabilities in (42) based on the Bhattacharyya parameter vector 

  ),z,z,z,z( '
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342414044z   

which can be calculated from [1], [2], i.e., 
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for ∀  k ∈  {1, 2} starting with z1,0 = 1/2, shown in Fig.3(b). Consequently, we form a permutation π4 = (i0, i1, i2, 

i3) of (0, 1, 2, 3) corresponding to entries of x = (x0,∈, x1,∈, x2,∈, x3,∈)T so that the inequality
4

j,i
'z  ≤ 

4
k,i

'z ∀  0 ≤ j < 

k ≤ 3, is true. The reliability of OFDM splitting for the FSF channels can be derived as 

 z(4) = (15/16, 9/16, 7/16, 1/16)   (46) 

which creates a permutation π4 = (3, 2, 1, 0). It implies that for x∈ embedded in four OFDM symbols, the last 

two signals {x2,∈, x3,∈} can be transmitted with higher reliability than that of the first two signals { x0,∈, x1,∈}. 

Therefore, for the reliable transmission of signals over each subcarrier for uppolarizing system, we let {x2,∈, x3,∈} 

to be the information bits that are required to transmit from relay nodes, whereas {x0,∈, x1,∈} are frozen bits that 

provide assistance for the reliable transmissions. 

C. The Switching Polar Relay Communications with Space- 

Time-Frequency Codes 

 In what follows, we propose a high-reliable MIMO-OFDM relay system by rearranging a class of 

space-time-frequency code (STF) codes for four OFDM symbols over the FSF channels with the structure ex-

pressed in the stacked Alamouti code and the Jafarkhani code. Generally speaking, it is not difficult in practice 

to provide parallel transitions for an MIMO-OFDM communication system, especially for system with a large 

number of OFDM symbols. Therefore, a suitable STF may adapt itself to the transmission of multiple OFDM 

symbols with parallel transitions in the polar relay system. 

 According to the reliability of the switching polar relay system while calculating the Bhattacharyya 

parameters expressed in (44) and (46), for each subcarrier we obtain information bits XI, ∈ and '
IX   and frozen 

matrices XF,∈ and '
FX  in the downpolarizing system and the up-polarizing system, respectively. 

1) Switching Polar System with the Alamouti code: According to the above-mentioned OFDM polarizing 

for the FSF channels in two polar systems, i.e., the down-polarizing system and the up-polarizing system, we 

assume the transformed OFDM symbols ui can be encoded with the orthogonal block code that combines spatial, 

temporal and multipath processing for grouping signals. Actually, we can construct the Alamouti code structure 

on each subcarrier if the length of the CP lcp satisfies the constraints 

  .lcp sdrk,lsk,l
max

l,k 2 . 

To make the transmission processing clear, we consider an MIMO-OFDM relay system with one transmit an-

tenna at source node S, each relay node Rk, and one receive antenna at each relay node Rk with an OFDM sym-

bol matrix of size 4N ×2 in two time slots given by the stacked Alamouti code, 

Λ(x) = (c0,c1)=   ,
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where A(x2k−2, x2k−1), ∀  k ∈  {1, 2}, denotes the stacked Alamouti code [7] with N pairs of variables 

 {(x2k−2,∈, x2k−1),∈ : ∈ ℤN}. 

For each subcarrier, ∀  ∈ ℤN, it is given by 

 A(x2k−2,∈, x2k−1,∈) = 
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Next, we describe the polar MIMO-OFDM relay system by switching to polarizing OFDM symbols with the 

stacked Alamouti code. Based on the down-polarizing system in (29) to transmit Λ(x) expressed in (47), we 

have the received matrix of size 4 × 2 in two time slots given by 

 

 Y = HIXI + HFXF + E,    (49) 
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where and E = (e, e) is an equivalent AWGN vector of size 4 × 2. While deploying the up-polarizing system in 

(30) to transmit the same Λ(x) in (47), we have the received matrix of size 4 × 2 in the next two time slots given 

by 

 

 Y
′
 = H

′
FX

′
F + H

′
IX

′
I + E

′
,    (50) 

 

where E
′
 = (e

′
, e

′
) is an equivalent AWGN matrix of size 4 × 2 for the up-polarizing system in (30). 

 The two column vectors c0 and c1 in (47) are modulated for four OFDM symbols and transmitted, re-

spectively, in the first two time slots for the down-polarizing system. Therefore, information matrix XI∈ = A(x0∈, 

x1∈) and frozen matrix XF∈ = A(x2∈, x3∈), and hence extensive information matrix XI = A(x0,| x1) and frozen ma-

trix XF = A(x2, x3) are embedded in two OFDM symbols for two time slots, respectively. In the next two time 

slots, we switch to the uppolarizing system and achieve frozen matrix X
′
F = A(x0, x1) and information matrix X

′
I 

= A(x2, x3) in the same two respective OFDM blocks as that of the down-polarizing system. The selections of 

information matrices {XI, X
′
I} and frozen matrices {XF, X

′
F} for switching polar system are based on the calcu-

lation of the Bhattacharyya parameters, as shown in Fig.2. 

 Theorem 3.1: According to the down-polarizing system in (49) for the first two time slots, we consider 

4N signals for four OFDM symbols (x0, x1, x2, x3) embedded in the stacked Alamouti code in (47) for the trans-

mission and switch to the up-polarizing system in (50) for the next two time slots. After being processed with 

the afore-mentioned transformations, the CP removal and the N-point FFT operations while switching the down-

polarizing to up-polarizing system for four OFDM blocks in four time slots, the information matrix can be de-

polarized and hence be decoded with high reliability at destination node D as follows 

,
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which is an orthogonal code that can achieve the full diversity. 

The proof of Theorem 3.1 can be found in Appendix A. 

According to the reliability of OFDM splitting for the FSF channels in (44) and (46), we implement the PF relay 

scheme while transmitting the information bits with four OFDM symbols via two polar systems, i.e., down-

polarizing system and up-polarizing system. The polar system that are composed of down-polarizing system in 

(49) and up-polarizing system in (50) with the Alamouti code structure in terms of spatial, temporal and multi-

path for the FSF channels in four time slots has the similar performance behaviors as that of the Alamouti code 

for the space-time or space-frequency transmissions. 

2) Switching Polar System with the Jafarkhani code: We consider a 4 × 4 matrix given by the Jafarkhani 

structure [8] 

.

xxxx

xxxx

xxxx

xxxx

)C,C,C,C

**

**

**

**





























0123

1032

2301

3210

3210J(x)  (52) 

For the PF scheme, two column vectors c0 and c2 are transmitted in the first time slot and the third time slot for 

the down-polarizing system, whereas other two column vectors c1 and c3 are in the second time slot and the 

fourth time slot for the up-polarizing system. 

 In the down-polarizing system at source node S for four successive OFDM symbols we take the nota-

tions 
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where XI and XF are information matrix and frozen matrix given by 
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In the up-polarizing system we use the notation 
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where X
′
F and X

′
I are frozen matrix and information matrix given, respectively, by 
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Based on the above-mentioned matrices X and X
′
, we switch to polarizing MIMO-OFDM relay system in four 

time slots, i.e., the down-polarizing system for transmitting X and the up-polarizing system for transmitting X
′
. 

After being depolarized and decoded at destination node D, we achieve 
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Theorem 3.2: We consider 4N signals for four OFDM symbols (x0, x1, x2, x3) embedded in (52) for the trans-

mission in both down-polarizing system and up-polarizing system. In the first and third time slots we transmit X 

in (53) for the down-polarizing system in (29), and switch to transmitting X
′
 in (55) in the second and fourth 

time slots for the up-polarizing system in (30). After being processed with abovementioned processes, the CP 

removal and the N-point FFT operations while switching the down-polarizing system to up-polarizing system 

for four OFDM blocks in four time slots, the received noisy information matrix can be depolarized and decoded 

with high reliability at destination node D, namely we can achieve the transmitted matrix of size 4 × 4 given by 

decision matrix )x(Ĵ expressed in (57), which is a quasi-orthogonal code equivalent to the Jafarkhani code. 

The proof of Theorem 3.2 can be found in Appendix B. 

We can decode the initial signal vectors XI and X
′
I from XI and X

′
I, respectively, using the conventional 

Alamouti decoding or the Jafarkhani decoding with the ML receiver or the ZF/MMSE receiver after depolariz-

ing the transmitted signals at destination node D. However, in this paper we introduce a polar receiver via the 

polar decoding under a low complexity SIC decoding strategy that can bring out similar performance behaviors 

as that of ML decoding. According to the reliability of OFDM splitting for the FSF channels in (44) and (46), 

we implement the PF relay scheme while transmitting the information bits with four OFDM symbols via switch-

ing to down-polarizing communication and up-polarizing communication, which has the similar performance 

behaviors as that of the Alamouti code and the Jafarkhani code. 

It is shown in both (51) and (57) that the present PF MIMO-OFDM relay scheme with the STF code 

can achieve the similar diversity gain as that of the Alamouti code and the Jafarkhani code with OFDM polariz-

ing for the FSF channels. According to Arikan’s statement, we should obtain the good BER performance as long 

as the employed system is provided with a large number of OFDM symbols while implementing the polarizing 

operations on source node S and relay nodes R over the FSF channels. 

 

D. OFDM Depolarizing 

 In this subsection, we consider the SIC decoding for the proposed polar MIMO-OFDM relay system 

with standard complex constellations, such as binary phase shift keying (BPSK) modulation constellation. Re-

call that each signal xi,∈,∀  ∈ ∈  ℤN, in the ∈th
 subcarrier of OFDM block xi, ∀  i ∈  ℤ4, is independently trans-

mitted across Rk and a channel output yi,∈ is obtained with transition probability W(yi,∈|xi,∈). For each subcarrier 

in four OFDM symbols we misuse the simplified notations x≜x∈=
TT

,F
T

,I ),(  xx ,y|≜y∈=
TT

,
T
, ),(  21 yy for the down-

polarizing system, where y1 ≜ y1,∈ = (y0,∈, y1,∈)
T 

and y2≜y2,∈ = (y2,∈, y3,∈)
T
. Similarly, we define 

x
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' ),(x  

'' xx and
'y ≜ TT

,
T
,

' ),(y   21 yy  for each subcarrier in the up-polarizing system. 

 The SIC decoder of the down-polarizing system observes y and generates an estimate of x̂ of x. We 

may visualize the decoder as consisting of four decision elements for four respective OFDM symbols, each ele-

ment ix̂  for source element ix̂ , ∀  i ∈  ℤ4. 

The OFDM depolarizing algorithm of the polar system begins with the i
th

 decision element ix̂  for the down-

polarizing system. It waits till receiving all previous decisions ,x̂i 1 and upon receiving them; it calculates the 

likelihood ratio (LR) 
iL4 as follows 
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and generates its decision as 
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which is then sent to succeeding decision element 1ix̂ . The complexity of the decoding algorithm is determined 

essentially by the complexity of calculating LRs, which is N(1+log2 N) = 12 for computing one round. For the 

initial 

LRs, we calculate 
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For the down-polarizing system, the low level of LRs are obtained with a simple calculation using the reclusive 

formulas in (39), which gives 
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∀ k ∈ {1, 2}. After that the high level of LRs can be calculated using the reclusive formulas in (41). A 

straightforward calculation yields 
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The LRs 
)i(

L4 in (62) can be derived from (41), which can be found in Appendix C. 

 However, for the up-polarizing system the low level of LRs are given in [1] by 
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and the high level of LRs can be calculated as 
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So far we have calculated LRs of the polar system. The advantage of this OFDM depolarizing algo-

rithm is due to the relations of two level LRs in coordination with the formulas in (61,62,63,64). For example, 

two LRs )y(L t
)( 0

4  and )x̂,y(L t
)(

0
1

4  are assembled from the same pair of LRs )y(L
)(

1
0

2  and )y(L
)(

2
0

2 , while 

the other two LRs )x̂,y(L t
)(

1
2

4 and )x̂ˆ,y(L t
)(

21
3

4 x are from )x̂,y(L
)(

01
1

2 and )x̂ˆ,y(L
)(

102
1

2 x  due to the sym-

metry properties of the FSF channels. In addition, two LRs )y(L k
)( 0

2 and )x̂,y(L kk
)(

22
0

2  are assembled from 

the LRs L
(0)

(y2k−2) and L
(0)

(y2k−1), ∀  k ∈  {1, 2}. This process proposes an elegant approach for an accurate count 

of the total number of LRs that are required for a full description of the OFDM depolarizing algorithm, shown in 

Fig.4. 
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Fig. 3. Implementation of the successive cancellation decoder. 

 

Next we design an implementation of the SIC decoder for switching polar system. There are 12 nodes 

corresponding to LRs for decision elements x̂ . The depolarizing process carries out two crucial actions in the 

polar system, i.e., activating and responding [1] 

 Step 1: It begins with the activating phase in the downpolarizing system, in which the first decision element 

1x̂ from the leftmost column activates node1 for the calculation of )y('L
)( 0

4 to decode 1x of column vector 

x, which in turn activates node2 and node5 to achieve a pair of LRs, )y(L
)(

1
0

2  and )y(L
)(

2
0

2 . After that 

node2 activates node3 and node4, and node5 activates node6 and node7, respectively, for calculating two 

initial-level pairs of LRs, L
(0)

(y2k−2) and L
(0)

(y2k−1), ∀  k ∈  {1, 2}. 

 Step 2: In the responding phase, node3 and node4 compute L
(0)

(y0) and L
(0)

(y1) using (60), respectively, and 

pass them to their left-side two neighbors, node2 and node9. Similarly, node6 and node7, compute and pass 

the pair of LRs L
(0)

(y2) and L
(0)

(y3) to their left-side two neighbors, node5 and node10, respectively. 

 Step 3: In what follows, node2 and node5 compute )y(L
)(

1
0

2  and )y(L
)(

2
0

2 using (61) and pass the resulting 

pairs of LRs to its left-side two neighbors node1, respectively. After that, node1 compiles its response 

)y('L
)( 0

4 to calculate 0x̂ according to (62). Consequently, node1 sends 0x̂ to its neighbor node8, which is 

needed for calculating 1x̂ . The yielded decision elements 0x̂ and 1x̂  are both passed to node8 and node12 

that may generate 2x̂  and 3x̂ . Fortunately, since 2x̂ and x3 are the frozen bits that have low-reliability in the 

down-polarizing system, it is not necessary to generate 2x̂ and 3x̂  while directly setting 2x̂ = 3x̂ = 0. 

 Step 4: The depolarizing process switches to the up-polarizing system while calculating 2x̂ and 3x̂ with 

high reliability. In this phase 0x̂  and 1x̂  are the frozen bits that are directly set 0x̂ = 1x̂ = 0. Consequently, 

2x̂ only activates node11 for computing )ˆ,y('L
)(

1
2

4 x based on (64), where 

)x̂ˆ,y(L
)('

102

1
2 x  )x̂,y(L

)('
1

1
2 can be obtained from the response of node9 and node10 using (63). The de-

cision element 2x̂ is then sent to node12 for 3x̂ . The last decision element 3x̂ activates node12 for x3 based 

on )x̂,ˆ,y('L
)(

21
3

4 x in (64) without activating node9 and node10. The algorithm continues in this manner 

until the receiver receives and decides the transmitted vector x̂ . 

We note that in the down-polarizing system it is not necessary to generate 2x̂ and 3x̂ since they are frozen 

bits that have low-reliability while transmitting in the down-polarizing channels. Similarly, in the up-

polarizing system it is not necessary to generate 0x̂ and 1x̂  since they are frozen bits with the low-

reliability while transmitting in the up-polarizing channels. In this way, the proposed depolarizing algo-

rithm can be made while directly setting 2x̂ = ˆx3 = 0 in the down-polarizing system and setting 0x̂ = 1x̂ = 

0 in the up-polarizing system. This decoding process continues until all information bits x are jointly de-

coded in the end. Next, we will show the BER performance behaviors of the polar system with simulation 

results. Thus, we can obtain x from x̂ in the polar system with the high-reliability. 
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Fig. 4.   BER performance behaviors with polar decoding. 

 
Fig. 5.  BER performance comparison with ML decoding and polar decoding. 

 

E. Simulation Results 

According to the OFDM depolarizing algorithm with the SIC decoder for the polar system, we present 

some simulation results and compare their BER performance behaviors. We present the BER performance as 

functions of the transmit power pt. We deploy the Alamouti code and the Jafarkhani code on each relay node Ri 

while implementing the OFDM depolarizing techniques for the polarizing FSF channels. Therefore we can use 

the ML symbol-wise decoding, as well as the OFDM depolarizing algorithm in four time slots, where the data 

symbols in A are drawn from BPSK constellation. 

In Fig. 4, we present the BER curves of the stacked Alamouti code for four OFDM symbols transmitted 

at source node S. We consider the polar MIMO relay systems provided with transmission power pt for reference 

in terms of the power allocation strategy in (3). For the present polar system, it shows that the slope of the BER 

performance curve of the proposed PF scheme with the Alamouti code for the polar system via the OFDM depo-

larizing algorithm approaches the direct relay system without OFDM polarizing via the ML decoding when 

power pt increases. It implies that the PF scheme can achieve full diversity with the depolarizing algorithm. Fur-

thermore, the BER performance behavior of the present polar system is a little better than that of the direct 

transmission approach which verifies our analysis of the transmission reliability of the polarized FSF channels. 

Simulations demonstrate that the proposed PF scheme with the OFDM depolarizing algorithm has a similar per-

formance as that of the Alamouti scheme with the ML decoding for large transmission power pt when the depo-

larizing is applied at the receiver. In Fig. 6 it implies that the PF scheme can achieve full diversity in terms of 

the ML decoding and the OFDM depolarizing decoding. In this case, the BER performance behavior is much 

similar as those of the ML decoding, as stated in [11]. Fortunately, for the polar system, the BER performance 

of the decoder provided with the depolarizing algorithm outperforms that of the direct approach using the ML 

decoding. 
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IV. CONCLUSION 
In this paper, we have presented a simple design of the PF scheme based on two polarizing systems 

over the FSF channels, i.e., the down-polarizing system and the up-polarizing system. There are two polar cod-

ing processes for each polarizing system, including source polarizing and relay polarizing OFDM sequences. 

The present polar system has a salient recursiveness feature and can be decoded with the SIC decoder, which 

renders the scheme analytically tractable and provides a low-complexity coding algorithm while multiple 

OFDM symbols are equipped. We analyze the BER performance and diversity of such systems based on the 

STF codes with the fixed size using the polarizing FSF channels, which tend to polarize with respect to the in-

creasing reliability under certain OFDM combining and splitting operations. Simulations demonstrate that the 

proposed polar system has the similar BER performance behaviors as that of the STF codes, the stacked Ala-

mouti code and the Jafarkhani code, but outperforms these STF codes in terms of the BER performance for large 

transmission power when the OFDM depolarizing algorithm is applied at the receiver. 

 

APPENDIX 

A. Proof of Theorem 3.1 

We consider 4N signals for four OFDM symbols (x0, x1, x2, x3) embedded in (47) for the transmission 

in the down-polarizing system for the first two time slots. For each subcarrier ∈  ∈  ℤ N, we have 
T)x,x,x,x(c   32100 and T**** )x,x,x,x(c   23011 .  According to the tree process of the Bhattacharyya para-

meters for the recursive polarizing OFDMs in Fig.2(a), we achieve the respective information bits )x,x(  10 and 

)x,x( **
 01  in two time slots after the CP removal and the N-point FFT operations at destination node D. The 

frozen bits are given by )x,x(  32 and )x,x( **
 23 respectively. We do not need to decode frozen matrix XXF 

since it has been transmitted on channels with low reliability in the down-polarizing system. Therefore, after 

depolarizing the system we obtain the 4 × 2 originally transmitted matrix given by 

.
x

x

x

x
X̂

*

*
'
I 


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2

3

3

2
   (66) 

Combining (65) and (66) in four time slots, we have )X̂,X̂(diagX̂ '
AA from which the embedded signal ma-

trix can be rewritten as 

,
)x,x(A

x,x(A
)(ˆ











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







32

22

22

10 0

0
x

  (67) 

where can be further decoded with the orthogonal STBC decoding algorithms. This completes the proof of 

Theorem 3.1. 

 

B. Proof of Theorem 3.2 

For each subcarrier of four OFDM symbols (x0, x1, x2, x3) embedded in (52) for the transmission in both 

down-polarizing system. We transmit XX in (53) in the first and third time slots for the polarizing MIMO relay 

system in (29). Namely, for each subcarrier ∈  ∈  ℤ N, we have T)x,x,x,x(c   32100 and T)x,x,x,x(c 




  10323 Ac-

cording to the tree process of the Bhattacharyya parameters for the recursive polarizing OFDMs in Fig.2(a), we 

achieve the respective information bits )x,x(  10 and )x,x( 



 23  in the first and third time slots after the CP 

removal and the N-point FFT operations at destination node D. The frozen bits are given by 

)x,x(  32 and )x,x(  10 , respectively. After depolarizing the system we obtain the 2×2 originally transmitted 

matrix with high reliability given by 
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
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0

1
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   (69) 

Combining (68) and (69) in four time slots, we have the embedded information matrix can be rewritten as After 

being depolarized and decoded at destination node D, we have 



A Distributed Polarizing Transmission System for Frequency Selective Fading Channels 

www.ijesi.org                                                  50 | P a g e  

.

x

x

x

x

x

x

x

x

)(Ĵ
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We note that the depolarized information matrix Ĵ  in (70) is a quasi-orthogonal matrices, which is equivalent to 

the Jafarkhani code if and only if 



  3210 cccc . In fact, it is easy to prove that 
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From the above analysis, it implies that the 

depolarized codes can be further decoded with the ML decoder or MMSE/ZF decoder for the quasi-orthogonal 

STBC [8]. However, whenever there is the constraint   3210 cccc for )(Ĵ x , the yielded codes have an ortho-

gonal structure and hence have the similar performance behaviors as that of the Alamouti code [7]. This com-

pletes the proof of Theorem 3.2. 

 

C. Proof of (62) from (41) 

In order to derive the LRs for the down-polarizing system, we deploy the calculation approach for the up-

polarizing system suggested by Arikan [1]. 

 

For the simplicity of this proof, we consider the proof of the validity of the LRs ),y(L t
)i(

4 ∀  i ∈  ℤ 4, for decision 

element ix̂ in the depolarizing algorithm to illustrate the relationship of two level of LRs )y(L t
)i(

4  in (62) and 

)y(L t
)i(

2 in (61). According to the defined LR in (58), we use the recursive of the splitting transition probabili-

ties 
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W4  ∀  i ∈  ℤ 4, and thus achieve 
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In a similar way, we derive the formulas in (61) while calculating the low level LRs ,L
)i(

2 ∀  i ∈  ℤ 2, from (39). 

Namely, we obtain the relationship of two level LRs 
)i(

L2 and LRs )i(L given by 
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  (73) 

This completes the proof of our statement of derivation of LRs in (62) and (61). 
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